March 05, 2024 Volume 20 Issue 09
 

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Energy-saving process reShAPEs aluminum scrap recycling

By Karyn Hede, Pacific Northwest National Laboratory

Energy savings approaching 90% expected from employing entirely post-consumer aluminum to make high-grade building components.

The circular economy just closed the loop on scrap aluminum, thanks to a new patent-pending technology developed at the Department of Energy's Pacific Northwest National Laboratory (PNNL). That twisted aluminum mesh, those banged up bicycle frames, and the used car parts now languishing in junk yards could gain new life as building structures such as door and window frames, facades, lighting, decorative features, and myriad other uses -- all while conserving nearly all the energy required to manufacture new aluminum products.

Post-consumer recycled aluminum scrap transforms into new building materials through Shear Assisted Processing and Extrusion (ShAPE), a patented manufacturing process. [Credit: Photo by Andrea Starr/Pacific Northwest National Laboratory]

 

 

 

 

It's no secret that strong, yet lightweight aluminum parts are being deployed more often as building materials. However, there's a high energy and greenhouse gas emissions cost to mining and refining aluminum. According to the International Aluminum Institute, the production of 1 ton of primary aluminum emits an average of 17 tons of carbon dioxide into the atmosphere.

Now, rather than processing mined aluminum, rigorous laboratory testing has shown that PNNL's Shear Assisted Processing and Extrusion Process (ShAPE™) can transform 100% post-consumer scrap aluminum into usable extrusions that meet or exceed stringent ASTM standards for strength and flexibility for common building-grade alloys 6061 and 6063. The ShAPE technology unlocks the possibility of creating circularity in aluminum scrap markets, thus reducing dependency on imported primary aluminum and the massive amounts of energy associated with its production.


VIDEO: Rigorous laboratory testing has shown that PNNL's Shear Assisted Processing and Extrusion Process (ShAPE) can transform 100% post-consumer scrap aluminum into usable extrusions that meet or exceed stringent ASTM standards for strength and flexibility for common building-grade alloys. [Credit: Sara Levine and Eric Francavilla/Pacific Northwest National Laboratory]

"With approximately 55% of the global aluminum extrusion market servicing the building and construction industry, the evolution of ShAPE to include aluminum recycling for building structures is an enormous opportunity for decarbonizing the built environment," said PNNL Chief Scientist Scott Whalen, who led this research. "We are finding that the unique microstructures within the metal are more tolerant to impurities than previously thought. This enables us to reach even deeper into the aluminum scrap market while maintaining material performance."

The latest round of patented ShAPE technology prompted technology entrepreneur Eric Donsky to form a start-up manufacturing company to scale a ShAPE-based process into vertically integrated manufacturing facilities that upcycle scrap aluminum into a portfolio of low-carbon extruded parts initially targeting the building and construction industry. Atomic13 has signed an exclusive agreement with PNNL to commercialize the technology in certain fields of use and aims to move rapidly to create a variety of custom-extruded aluminum parts for the building and consumer product industries, relying entirely on post-consumer aluminum scrap. The energy savings is expected to assist builders aiming to meet or exceed Leadership in Energy and Environmental Design standards for energy-efficient buildings, among other benefits.

"The ShAPE technology is an amazing opportunity for U.S. manufacturing and the build-out of our critical infrastructure," said Atomic13 Founder Eric Donsky. "We believe there is tremendous environmental and commercial value to building circularity in the aluminum extrusion industry while helping the building and construction industry significantly reduce the embodied carbon of their products. ShAPE technology enables companies like Atomic13 to produce aluminum extrusions made from 100% post-consumer scrap with 90% lower carbon. At the same time, the low feedstock costs result in lower costs for consumers."

Extrusions made from AA6063 industrial scrap using the ShAPE process to produce (a) circular, (b) square, (c) trapezoidal, and (d) two-cell trapezoidal profiles. [Credit: Image courtesy Scott Whalen/Pacific Northwest National Laboratory]

 

 

 

 

Aluminum extrusions are already a mainstay of the building industry. What's different about the ShAPE manufacturing process is that the scrap aluminum bricks or rod-shaped billets are deformed using heat generated by high shear forces to pulverize impurities in scrap aluminum into tiny particles and uniformly disperse them within the aluminum microstructure. This dispersion eliminates, for example, microscopic iron clumps that can generate microfractures in recycled aluminum products manufactured using conventional methods. ShAPE aluminum extrusion offers massive energy savings by eliminating the need to dilute impurities found in recycled aluminum with 25% to 40% newly mined aluminum before processing.


Animation: Automakers' aluminum scrap transforms into new vehicle parts with the PNNL-patented ShAPE manufacturing process. Heat and friction soften the aluminum and transform it from rough metal into a smooth, strong uniform product without a melting step. [Credit: Animation by Sara Levine/Pacific Northwest National Laboratory]

The PNNL team evaluated the mechanical properties of rods, tubes, and irregular hollow, multichannel trapezoids under mechanical stress. The team tested 540 unique conditions products, made from post-consumer scrap briquettes, some with high iron content (0.2% to 0.34% iron). All performed at or above ASTM standards for yield strength and ultimate tensile strength.

Creating new demand in the scrap aluminum market
According to the International Aluminum Organization, producing 1 metric ton of molten aluminum requires 16.6 megawatt hours of electricity. Globally, the aluminum industry produced over 69,000 metric tons of primary, mined aluminum in 2022. Half of that came from China, which uses coal-fired power to generate the 16.6-megawatt hours of electricity and 17 tons of carbon dioxide emissions per ton of aluminum produced.

"The ShAPE manufacturing process conserves energy and eliminates greenhouse gas emissions on several fronts," said Whalen. "First, we avoid the need to add primary aluminum. Then, we eliminate the need for what is called homogenization of the billet material, a 6- to 24-hour heat treatment near 500 °C prior to extrusion."

In addition, eliminating the need to add newly mined aluminum greatly reduces the manufacturing cost, opening the door to a larger market for what has been considered lower-grade "twitch" aluminum scrap. This kind of scrap is composed of an ever-changing mix of manufacturing scrap and post-consumer goods such as the ubiquitous beverage cans, but also all manner of used house siding, window and door frames, step ladders, and used equipment of all sorts.

"Creating a circular market that provides a value proposition for this twitch scrap opens up the possibility for new industrial uses in the building industry, among sporting goods manufacturers, auto parts, and framing for emerging industries such as solar panel manufacturing," said Donsky.

Atomic13 is currently in the design phase of its first commercial manufacturing line with a leading equipment company in the extrusion industry and is also evaluating site locations in the Midwest and Southeast. The company is in discussions with builders and construction companies interested in sustainability and the decarbonization of building materials and plans to accept orders by early 2025.

The award-winning ShAPE technology has been granted seven U.S. patents with 34 patents pending. The technology is available for licensing in various fields of use. For more information about licensing opportunities, contact PNNL's Office of Commercialization.

-------------------SIDEBAR -----------------------

A 2019 article in Designfax by PNNL described the ShAPE process in more depth using aluminum alloy powders. A video (below) from that article is useful to review for people interested in the technology. In regard to PNNL's latest developments, making the jump from aluminum alloy powders to aluminum scrap used in the process seems like a natural progression with productivity gains on several fronts.

Interestingly, the ShAPE process can also be used to join dissimilar metals. PNNL demonstrates that process here:

Learn more about ShAPE technology at pnnl.gov/shape.

Published March 2024

Rate this article

[Energy-saving process reShAPEs aluminum scrap recycling]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2024 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy